Finite Range Random Walk on Free Groups and Homogeneous Trees
نویسندگان
چکیده
منابع مشابه
Vertex-reinforced random walk on Z has finite range
A stochastic process called Vertex-Reinforced Random Walk (VRRW) is defined in Pemantle (1988a). We consider this process in the case where the underlying graph is an infinite chain (i.e., the one-dimensional integer lattice). We show that the range is almost surely finite, that at least 5 points are visited infinitely often almost surely, and that with positive probability the range contains e...
متن کاملComparison Techniques for Random Walk on Finite Groups
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملRandom Walk on Periodic Trees
Following Lyons (1990, [4]) we define a periodic tree, restate its branching number and consider a biased random walk on it. In the case of a transient walk, we describe the walk-invariant random periodic tree and calculate the asymptotic rate of escape (speed) of the walk. This is achieved by exploiting the connections between random walks and electric networks.
متن کاملRandom Walk in Random Groups
This paper compiles basic components of the construction of random groups and of the proof of their properties announced in [G10]. Justification of each step, as well as the interrelation between them, is straightforward by available techniques specific to each step. On the other hand, there are several ingredients that cannot be truly appreciated without extending the present framework. We sha...
متن کاملAnisotropic Branching Random Walks on Homogeneous Trees
Symmetric branching random walk on a homogeneous tree exhibits a weak survival phase: For parameter values in a certain interval, the population survives forever with positive probability, but, with probability one, eventually vacates every finite subset of the tree. In this phase, particle trails must converge to the geometric boundary of the tree. The random subset 3 of the boundary consisti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1993
ISSN: 0091-1798
DOI: 10.1214/aop/1176989012